An Application of Matroid Theory to the SAT Problem

نویسنده

  • Oliver Kullmann
چکیده

We consider the deficiency and the maximal deficiency "! #$ % of a clauseset (a conjunctive normal form), where is the number of clauses in and is the number of variables. Combining ideas from matching and matroid theory with techniques from the area of resolution refutations, we prove that for clause-sets with '& ( , where ( is considered as a constant, the SAT problem, the minimally unsatisfiability problem and the MAXSAT problem are decidable in polynomial time (previously, only poly-time decidability of the minimally unsatisfiability problem was known, and that only for ( *) ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS

An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.

متن کامل

A multi agent method for cell formation with uncertain situation, based on information theory

This paper assumes the cell formation problem as a distributed decision network. It proposes an approach based on application and extension of information theory concepts, in order to analyze informational complexity in an agent- based system, due to interdependence between agents. Based on this approach, new quantitative concepts and definitions are proposed in order to measure the amount of t...

متن کامل

Application of queuing theory in production-inventory optimization

This paper presents a mathematical model for an inventory control system in which customers’ demands and suppliers’ service time are considered as stochastic parameters. The proposed problem is solved through queuing theory for a single item. In this case, transitional probabilities are calculated in steady state. Afterward, the model is extended to the case of multi-item inventory systems. The...

متن کامل

Solving product mix problem in multiple constraints environment using goal programming

The theory of constraints is an approach to production planning and control that emphasizes on the constraints to increase throughput by effectively managing constraint resources. One application in theory of constraints is product mix decision. Product mix influences the performance measures in multi-product manufacturing system. This paper presents an alternative approach by using of goal pro...

متن کامل

New algorithms for linear k-matroid intersection and matroid k-parity problems

We present algorithms for the k-Matroid Intersection Problem and for the Matroid k-Pafity Problem when the matroids are represented over the field of rational numbers and k > 2. The computational complexity of the algorithms is linear in the cardinality and singly exponential in the rank of the matroids. As an application, we describe new polynomially solvable cases of the k-Dimensional Assignm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000